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Abstract

A variational solution of the fundamental eigenmode is presented for high gain free

electron lasers driven by flat electron beam having unequal emittances, betatron

focusings and beam sizes in two transverse planes.
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1 Introduction

The main objective of this article is to expand our earlier work [1] on the

eigenmode solution for high gain FELs into the situation where electron beam

distribution is no longer axially symmetrical. Such a beam, generally termed

flat beam, may have unequal emittances, betatron focusings, or beam sizes in

two transverse planes. Earlier studies on this subject date back more than a
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decade ago. Using a special variational technique [2], the fundamental mode

was calculated by Xie [3] for parallel beam having elliptical cross section. Later,

a dispersion equation for the eigenvalue of the fundamental mode was derived

using a different technique by Chin et al. [4] for more general cases including

unequal emittances and betatron focusings. However, the latter technique was

known at birth [4] to introduce a systematic error when approaching the 1D

limit, thus compromising its accuracy for short wavelength FEL calculations,

and furthermore, the dispersion equation was not solved.

In this article, we present the first general flat beam solution and specific

calculations for the fundamental eigenmode and examine effects of flat beam

on high gain FEL performance. The eigenmode equation is formulated for flat

beam in section 2. The variational solution is derived in section 3. Finally,

specific calculations for the LCLS case are given in section 4.

2 Eigenmode Equation

We specify the radiation field by a complex envelope ar(x, z, t) slowly varying

with respect to a carrier wave exp(krz − ωrt), where x ≡ {x, y}, the carrier

frequency ωr = ckr = 2πc/λr is determined by the resonance condition kr

= 2γ2
0kw/(1 + a2

w), γ0mc
2 is average electron energy, λw = 2π/kw is wiggler

period, aw = eBrmsλw/2πmc, and Brms is rms wiggler field assumed con-

stant along wiggler axis. The radiation field is normalized according to |ar| =

eErms/krmc
2, where Erms(x, z, t) is rms amplitude of the electric field. Upon

introducing Fourier transform by

aν =
1√
2π

∫
dθe−iνθ(eiθar),
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where θ = (kr + kw)z − ωrt and ν = ω/ωr, the eigenmode of the form aν =

a(x) exp(−iµz) can be determined by the mode equation [1,5,6]

(
µ− kw∆ν +

1

2kr

∂2

∂x2

)
a(x) =

ih

16kwL3
1d

∞∫

−∞
d2pdη

∂F

∂η

0∫

−∞
dse−i(µ−ξ)sa(x′), (1)

with

ξ = 2kwη −
kr
2

(p2
x + k2

βxx
2 + p2

y + k2
βyy

2),

x′ = x cos(kβxs) +
px
kβx

sin(kβxs),

y′ = y cos(kβys) +
py
kβy

sin(kβys),

L1d =
λw
4π

(
2πhγ3

0

ren0λ2
wa

2
wf

2
B

) 1
3

,

where µ is the complex eigenvalue related to our earlier notation [1] by µ =

iq/2L1d+kw∆ν, L1d is the 1D power gain length, ∆ν = ν−1, η = (γ−γ0)/γ0,

h = (2/
√

3)3, fB = 1 for helical wiggler and fB = J0(χw)− J1(χw) for planar

wiggler, χw = a2
w/2(1+a2

w), re is the classical radius of electron, n0 is the peak

electron volume density on the axis, F = F⊥(x,p)F‖(η) is unperturbed beam

distribution function normalized by

∞∫

−∞
d2pF⊥(x = 0,p) = 1,

∞∫

−∞
dηF‖(η) = 1.

Transverse focusing of the beam in wiggler is assumed to have a strength

invariant along the axis, thus betatron motion is governed by

px =
dx

dz
,

dpx
dz

= −k2
βxx, py =

dy

dz
,

dpy
dz

= −k2
βyy,

where βx = 1/kβx and βy = 1/kβy are constant betafunctions.
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To perform specific calculations, we use a Gaussian model with

F⊥ =
1

2πσxσykβxkβy
e
−
x2+p2x/k

2
βx

2σ2
x

−
y2+p2y/k

2
βy

2σ2
y , F‖ =

1√
2πση

e
− η2

2σ2
η ,

where σx =
√
βxεx and σy =

√
βyεy are rms beam sizes matched to the focusing

channel, εx and εy are rms emittances, and ση is relative rms energy spread.

Using X ≡ {X, Y } ≡ {x/σx, y/σy} and τ = s/2L1d, Eq. (1) can be expressed

in a more compact scaled form

(
2ηdx

∂2

∂X2
+ 2ηdy

∂2

∂Y 2
+ κ̄

)
a(X) =

∞∫

−∞
d2X′Π(X,X′)a(X′), (2)

where κ̄ = κ− ηω, κ = 2L1dµ and

Π(X,X′) =

0∫

−∞

τdτhe−Ψ

2πΦ
,

Φ = sin(2
√
ηdxηεxτ) sin(2

√
ηdyηεyτ),

Ψ = iκτ + 2η2
γτ

2 +
(1 + iηεxτ)Ωx

2 sin2(2
√
ηdxηεxτ)

+
(1 + iηεyτ)Ωy

2 sin2(2
√
ηdyηεyτ)

,

Ωx = X2 +X ′2 − 2XX ′ cos(2
√
ηdxηεxτ),

Ωy = Y 2 + Y ′2 − 2Y Y ′ cos(2
√
ηdyηεyτ).

There are six scaling parameters in Eq. (2): ηdx = L1d/2krσ
2
x and ηdy =

L1d/2krσ
2
y are diffraction parameters; ηεx = 2L1dkrkβxεx and ηεy = 2L1dkrkβyεy

characterize effective spread in longitudinal phase due to emittance and be-

tatron focusing, and ηγ = 2L1dkwση due to energy spread, respectively; and

ηω = 2L1dkw∆ν is a frequency detuning parameter. The 1D power gain length

can now be expressed as

L1d =
λw
4π

(
hIAσxσyk

2
wγ

3
0

Iba2
wf

2
B

) 1
3

,

where Ib is beam current and IA = 17.05 kA is the Alfv̀en current.
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3 Variational Solution

Next, we present an approximate solution for the fundamental mode. Accord-

ing to the recipe of a special variational technique [2], a variational functional

may be constructed from Eq. (2) as

∞∫

−∞
d2X a(X)

{
2ηdx

∂2

∂X2
+ 2ηdy

∂2

∂Y 2
+ κ̄

}
a(X)

=

∞∫

−∞
d2Xd2X′a(X)Π(X,X′) a(X′).

Substituting into the variational functional a trial solution of the form

a(X) = exp(−αxX2 − αyY 2),

where αx and αy are complex variational parameters to be determined, and

applying the variational conditions [2]

δκ

δαx
= 0,

δκ

δαy
= 0,

to the resulting equation, we obtain three equations from which the eigenvalue

κ and mode parameters αx and αy can be determined by

F1 ≡
κ̄

4
√
αxαy

− ηdx
2

√
αx
αy
− ηdy

2

√
αy
αx
−

0∫

−∞

τdτhe−f1

√
f2xf2y

= 0, (3)

F2 ≡ −
κ̄

8αx
√
αxαy

− ηdx
4
√
αxαy

+
ηdy
4αx

√
αy
αx

+

0∫

−∞

τdτhe−f1f ′2x

2f2x

√
f2xf2y

= 0, (4)

F3 ≡ −
κ̄

8αy
√
αxαy

− ηdy
4
√
αxαy

+
ηdx
4αy

√
αx
αy

+

0∫

−∞

τdτhe−f1f ′2y

2f2y

√
f2xf2y

= 0, (5)

where
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F2(κ, αx, αy) =
∂F1(κ, αx, αy)

∂αx
,

F3(κ, αx, αy) =
∂F1(κ, αx, αy)

∂αy
,

f1 = iκτ + 2η2
γτ

2,

f2x = (1 + iηεxτ)2 + 4αx(1 + iηεxτ) + 4α2
x sin2(2

√
ηdxηεxτ),

f2y = (1 + iηεyτ)2 + 4αy(1 + iηεyτ) + 4α2
y sin2(2

√
ηdyηεyτ),

f ′2x =
∂f2x

∂αx
= 4(1 + iηεxτ) + 8αx sin2(2

√
ηdxηεxτ),

f ′2y =
∂f2y

∂αy
= 4(1 + iηεyτ) + 8αy sin2(2

√
ηdyηεyτ).

It is noted that in the limit of ηεx = ηεy = ηγ = 0, Eqs.(3,4,5) are reduced to

the same equations studied earlier [3] for the case of parallel Gaussian beam

with elliptical cross section.

Given parameter αx and αy, the mode properties can be determined com-

pletely by comparing the mode profile

a = exp

(
−αxx

2

σ2
x

− αyy
2

σ2
y

)
,

with the usual Gaussian description

a = exp

(
− x

2

w2
x

+
ikrx

2

2Rx

− y2

w2
y

+
ikry

2

2Ry

)
,

where wx and wy are mode sizes, Rx and Ry are radii of phasefront curvature.

In particular, we have for mode sizes

wx =
σx√
αxr

, wy =
σy√
αyr

,

and for far field divergence angles

θx =

√√√√αxr

(
1 +

α2
xi

α2
xr

)(
λr
πσx

)
, θy =

√√√√αyr

(
1 +

α2
yi

α2
yr

)(
λr
πσy

)
.
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Finally, power gain length of the fundamental mode is related to the eigenvalue

by Lg = L1d/κi.
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Fig. 1. Lg as a function of Rε varied from 1 to 50 with βx and βy optimized to

minimize Lg.
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Fig. 2. Optimized βx and βy as functions of Rε varied from 1 to 50.
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Fig. 3. Rσ and Rw as functions of Rε varied from 1 to 50 with optimized βx and βy.

4 LCLS Examples

Given the solution of Eqs.(3,4,5), we are now ready to examine effects of flat

beam on high gain FEL performance. Let’s first define ratios of emittances,

betafunctions, beam sizes and mode sizes respectively by

Rε =
εx
εy
, Rβ =

βx
βy
, Rσ =

σx
σy
, Rw =

wx
wy
.

Consider a scenario in which Rε is increased from unity under the constraint

that 4D emittance εxεy = ε2
0 is kept constant. At each value of Rε, Lg is

minimized by varying βx, βy and frequency detuning. We shall take LCLS

nominal design values for all other parameters [7]: λr = 1.5Å, γ0 = 28009,

Ib = 3.4kA, γ0ε0 = 1.5mm-mrad, ση = 2 × 10−4, a planar wiggler with λw =

3cm and
√

2aw = 3.7. In this scenario Rε is the only free varying parameter.

Figure 1 shows Lg as a function of Rε varied from 1 to 50 with optimized βx

and βy given in Figure 2. At larger value of εx, focusing has to be relaxed

with larger βx to minimize gain reduction due to angular spread. On the other
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Table 1

LCLS Examples

Rε 1 10 50

γ0εx (mm-mr) 1.5 4.74 10.6

γ0εy (mm-mr) 1.5 0.474 0.212

βx (m) 20 47 95

βy (m) 20 9.4 6.7

σx (µm) 32 90 190

σy (µm) 32 13 7.1

wx (µm) 44 76 120

wy (µm) 44 29 26

θx (µr) 1.6 1.1 0.83

θy (µr) 1.6 2.4 3.1

Lg (m) 6.0 6.7 8.3

L1d (m) 3.1 3.1 3.3

hand, focusing can be enhanced with smaller βy at smaller value of εy. Figure

3 shows Rσ and Rw as functions of Rε varied from 1 to 50. Notice the aspect

ratio of laser mode is much less than that of electron beam. More details are

given in Table 1 for three cases Rε = 1, 10, 50.
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5 Conclusions

We have presented an effective solution of the eigenmode for high gain FELs

driven by general flat beam. It is found that the gain length increases with

emittance ratio when 4D emittance is kept constant, and the rate of increase is

rather weak in the LCLS parameter regime if beam focusing is simultaneously

optimized. In addition, the aspect ratio of laser mode is much smaller than

that of electron beam for larger emittance ratio. Effects of flat beam in other

regimes and for other scenarios can be readily evaluated with the solution and

methods provided here.
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